Perdereau,V提出了一种混合机器人位置控制方案。随后,周等人提出了一种基于自适应阻抗控制的打磨机器人混合控制策略近设计了一个模糊力控制器,在除锈过程中模仿人类的行为。随后,赵等人提出了一种基于模糊比例积分微分(PID)的力/位扰动抑制控制策略。对于预期的15 N接触力,所提出的控制策略可以实现13.4%的力控制精度,并且0.0362 mm的材料去除深度可以达到1.2微米的精度.朱等提出了一种基于一维力传感器PID控制器的动态控制方法。抛光表面的粗糙度Ra %3C 0.4微米,材料去除深度更稳定,偏差保持在0.003 mm,40 N时的均方差为0.37 N
对于个研究目标,从精度控制、柔顺控制和协同控制三个方面分析了机器人打磨复杂零件所面临的问题和挑战,以及它们对加工工件几何精度、表面完整性和加工效率的影响。对于本综述的第二个目的,整理了迄今为止机器人打磨领域的相关研究工作,并提供了克服挑战的各种策略和替代解决方案。研究视角主要集中在机器人打磨的高精度在线测量、打磨余量控制、恒接触力控制和表面完整性,从而有可能构建机器人打磨系统的“测量-操纵-加工”一体化。对于第三个目标,本研究工作的典型应用是成功实现机器人打磨涡轮叶片和大型复杂结构进行了讨论。此外,还提出了未来工作的一些研究方向,以促进复杂零件的机器人打磨在实际应用中更加智能和。
SUHNER产品的销售和分销遍布,与另一家连接元件的国际制造商是SUHNER Power-Pack机器人机床项目的理想合作伙伴。它与所有机器人制造商的兼容性使其更适用于要求的应用。
磨料的更换
磨料通常具有较短的生命周期。一项获得的磨料快速更换系统(处理和重新装载)被添加到程序中,以简化磨料的更换。
例如,SUHNER磨料系统的这种快速变化允许依次使用七种不同的磨料来达到所需的表面光洁度。
自动化磨料更换增加了灵活性,并消除了无效的生产时间。